14 research outputs found

    Motivating children to learn effectively: exploring the value of intrinsic integration in educational games

    Get PDF
    The concept of intrinsic motivation lies at the heart of the user engagement created by digital games. Yet despite this, educational software has traditionally attempted to harness games as extrinsic motivation by using them as a sugar coating for learning content. This article tests the concept of intrinsic integration as a way of creating a more productive relationship between educational games and their learning content. Two studies assessed this approach by designing and evaluating an educational game called Zombie Division to teach mathematics to 7- to 11-year-olds. Study 1 examined the learning gains of 58 children who played either the intrinsic, extrinsic, or control variants of Zombie Division for 2 hr, supported by their classroom teacher. Study 2 compared time on task for the intrinsic and extrinsic variants of the game when 16 children had free choice of which game to play. The results showed that children learned more from the intrinsic version of the game under fixed time limits and spent 7 times longer playing it in free-time situations. Together, these studies offer evidence for the genuine value of an intrinsic approach for creating effective educational games. The theoretical and commercial implications of these findings are discussed

    Multi-modal, multi-source reading: a multi-representational reader’s perspective

    Get PDF
    In this commentary, I review the five articles that comprise the Special Issue titled ‘Towards a model of multi-source, multi-modal processing”. The papers are discussed in terms of how they help us understand the “second generational” issues of reader characteristics, representational choices, task demands and assessment approaches. The commentary concludes by anticipating themes for future work that are common to all the papers’ concerns

    Designing and evaluating multi-representational learning environments for primary mathematics

    Get PDF
    This thesis reports the design and evaluation of multi-representational learning environments that teach aspects of number sense. COPPERS is concerned with children's belief that mathematical problems can have only a single correct answer. CENTS addresses the skills and knowledge required for successful computational estimation. Although, there is much multi-representational software and a significant body of research which suggests that learning with multiple external representations (MERs) is beneficial, little is known about the conditions under which MERs promote effective learning. To address this, a framework was proposed for considering MERs. It consists of a set of dimensions along which multi-representational software can be described and specifies learning demands of MERs. This framework was used to generate predictions about the effectiveness of different multi-representational systems. Experiments investigated children's performance in multiple solutions and computational estimation before they received direct teaching and tested whether the learning environments could help children develop these skills. Each experiment examined how specific aspects of the learning environments contributed to learning outcomes. Experiments with COPPERS showed that children's pre-test performance was generally poor. Improved post-test performance on multiple solutions tasks occurred when children gave substantially more answers on the computer than their pre-test base-line. They rarely chose this strategy for themselves. It was found that providing a tabular representation of solutions in addition to the familiar row and column representation improved learning. Estimation is difficult for primary school children, but limited teaching led to substantial improvements in strategies and accuracy of estimates. Three experiments with CENTS addressed the effects of MERs on learning. When representations were too difficult to co-ordinate, then either children did not improve at understanding the accuracy of estimates, or focused their attention upon a single representation. Additionally, varying how information was distributed across representations influenced how representations were used. These experiments show that when considering learning with MERs, it is not sufficient to consider the effects of each representation in isolation. Behaviour with representations changes depending on how they are combined. These findings are discussed in terms of their implications for the design of multi-representational learning environments

    Learning by Drawing Visual Representations: Potential, Purposes, and Practical Implications

    Get PDF
    The technique of drawing to learn has received increasing attention in recent years. In this article, we will present distinct purposes for using drawing that are based on active, constructive, and interactive forms of engagement. In doing so, we hope to show that drawing to learn should be widely used and that there is good evidence to support its use in many situations. To make the most of these distinct purposes, teachers should note that what learners draw matters and that this needs to be assessed in relation to task demands. Drawing to learn will also require learners to be supported to engage meaningfully in ways that are matched to these pedagogical purposes

    Do student perceptions of teaching predict the development of representational competence and biological knowledge?

    Get PDF
    Dealing with representations is a crucial skill for students and such representational competence is essential for learning science. This study analysed the relationship between representational competence and content knowledge, student perceptions of teaching practices concerning the use of different representations, and their impact on students’ outcome over a teaching unit. Participants were 931 students in 51 secondary school classes. Representational competence and content knowledge were interactively related. Representational aspects were only moderately included in teaching and students did not develop rich representational competence although content knowledge increased significantly. Multilevel regression showed that student perceptions of interpreting and constructing visual-graphical representations and active social construction of knowledge predicted students’ outcome at class level, whereas the individually perceived amount of terms and use of symbolic representations influenced the students’ achievement at individual level. Methodological and practical implications of these findings are discussed in relation to the development of representational competence in classrooms

    Depicting the tree of life in museums: guiding principles from psychological research

    Get PDF
    The Tree of Life is revolutionizing our understanding of life on Earth, and, accordingly, evolutionary trees are increasingly important parts of exhibits on biodiversity and evolution. The authors argue that in using these trees to effectively communicate evolutionary principles, museums need to take into account research results from cognitive, developmental, and educational psychology while maintaining a focus on visitor engagement and enjoyment. Six guiding principles for depicting evolutionary trees in museum exhibits distilled from this research literature were used to evaluate five current or recent museum trees. One of the trees was then redesigned in light of the research while preserving the exhibit’s original learning goals. By attending both to traditional factors that influence museum exhibit design and to psychological research on how people understand diagrams in general and Tree of Life graphics in particular, museums can play a key role in fostering 21st century scientific literacy
    corecore